Hallar la derivada de F^{-1} , en términos de F^{-1} , si $F\left(x\right) = \int_{1}^{x} \frac{1}{\sqrt{1-t^{2}}} dt$, $\forall x \in \left(-1,1\right)$. Solución.

Sabemos que si f es una función uno a uno y continua en un intervalo y tal que $f'\Big(f^{-1}\big(x\big)\Big) \neq 0$, entonces su función inversa, f^{-1} , es derivable en x, y

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$
 (*)

Analizando $F(x) = \int_1^x \frac{1}{\sqrt{1-t^2}} dt$, $\forall x \in (-1,1)$, vemos que por Primer Teorema Fundamental del Cálculo, F(x) es derivable en (-1,1), ya que la función $f(t) = \frac{1}{\sqrt{1-t^2}}$ es continua en el intervalo (-1,1). Al ser F(x), derivable en (-1,1), entonces es continua en (-1,1).

Además, $F'(x) = \frac{1}{\sqrt{1-x^2}}$ es positiva en (-1,1). Por tanto, la función $F(x) = \int_1^x \frac{1}{\sqrt{1-t^2}} dt$ es creciente en (-1,1), y en consecuencia es uno a uno en (-1,1).

Por tanto, $F(x) = \int_1^x \frac{1}{\sqrt{1-t^2}} dt$ es uno a uno y continua en (-1,1), y su derivada nunca se anula.

Aplicando el resultado (*) tenemos:

$$(F^{-1})'(x) = \frac{1}{F'(F^{-1}(x))} = \frac{1}{\frac{1}{\sqrt{1 - (F^{-1}(x))^2}}} = \sqrt{1 - (F^{-1}(x))^2}$$

Por tanto, $(F^{-1})'(x) = \sqrt{1 - (F^{-1}(x))^2}$, donde $F(x) = \int_1^x \frac{1}{\sqrt{1 - t^2}} dt$, $\forall x \in (-1, 1)$.